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Abstract—In the paper, we consider a new method of geophysical 
fields image analysis and sensitive segmentation. The method has 
a high sensitivity in comparison with other well known 
techniques of geophysical field image analysis and consists of the 
following main steps: expand the informational features using 
zero-space imaging method, processing by Independent 
Component Analysis, data fusion based on Kohonen’s self-
organizing map. 
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I.  INTRODUCTION 
The problem of sensitive segmentation of geophysical 

fields is traditionally the most essential in the theory and 
practice of remote sensing.  

Visual analysis of geophysical field images has a several 
nuances, connected with their features of psycho physiological 
perception. Especially, the brightness jumps of image areas are 
less than 1%, and it can’t be perceived visually. So, one of the 
main tasks for visual analysis is the increasing of sensitivity for 
revealing the low contrast areas.   

 
Figure 1.  Original image of magnetic field of the earth surface.  

 

From the practical point of view the most widely used 
methods of clasterization are two ones.    

1) Fuzzy C-mean clasterization method, which demands a 
priori setting of clusters’ number, that’s very complicated in 
many cases. Besides, the convergence of iterative algorithm 
also depends on choosing of the fuzzification parameter value, 
without any theoretical recommendations on that.         

2) Adaptive clasterization method, which is based on using of 
Kohonen’s self-organizing map. This method doesn’t require 
any priori assumptions about the number of clusters, and is 
more practically preferable in that meaning. However it’s 
required more quality of informational features coming on the 
input of net. These features should be normalized, 
nonredundant and most preferable statistical independent. 

The goal of this work is further development of Zero-Space 
Complex Imaging Method [1,2,3] by using a new 
informational basis formed from independent components, 
with next fusion in the result image by using adaptive  
Kohonen’s clusterization. 

II. METHODOLOGY 

A. Zero-space imaging method 
A zero-space imaging method involves following steps: 

• A moving window (3x3) slides along a geophysical image 
and compares each pixel (m,n) of analyzed image to  
unwrapped in a spiral order window, forming  a vector a: 

    [ ]1,0,1,);,(),( −=−−== lklnkmInmaa                  (1) 

    where, I(m,n) - brightness of geophysical image into a (m,n) 
point. 

• Coefficients of the vector a are considered as coefficients of 
a characteristic polynomial H(z) of ninth degree 
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    where z-transformation operator, which characterizes the 
order of  ai coefficients. 

Polynomial H(z) is completely characterized by its zeros zk
*: 
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The heart of zero-space imaging method concludes in 
analysis of zeros zk

*; k=1,…,9. Since every zero is 
characterized by its magnitude |zk|  and  phase φk, the source 
image can be extended into 18 new (9 magnitude and 9 phase) 
synthetical images. 

From the practical point of view, an expediency of  
polynomial H(z) zeros visualization as a nonlinear fusion 
operation of ai  coefficients, follows from  a well known 
property, that a small variation of ai  coefficients (i.e. local 
brightnesses of image I) can correspond to a great variation of 
complex zeros zk

* of  a polynomial H(z). It allows to increase a 
local sensitivity for low-contrast informational areas detection. 

However, the fact of space dimension increasing of 
informational features shows the necessity of additional 
processing on multidimensional data to make easier a 
procedure of the next analysis and problem-solving.  It 
stipulates expediency to proceed to the second part of our 
approach, based on independent component analysis (ICA). 
The informational processing of independent component 
analysis should be performed separately for magnitude |zk|  and  
phase φk characteristics, because of the different nature of  their 
informational potentials. A significance of additional 
multidimensional data processing based on ICA also follows 
the fact, that no one of new images  |zk|  and  φk couldn’t be 
given a preference in  comparison with others, because each of 
them is a “zero”., i.e. has an equal rights from the polynomial 
factorization point of view.   

B. Multidimensional information fusion 
In our experiments, we used Kohonen’s algorithm [7,8]  of 

self-organizing map for the fusion of the zero-space images, 
which provides unsupervised fusion and segmentation of  
multidimensional synthetic image ensembles into a single 
resulting image. Since SOM algorithm is well known, its 
mathematical specification wasn’t considered in this paper. It 
should be noted, that  success of applying SOM in our 
example, to our mind, was stipulated by such thing, as that for 
optimal procedure of segmentation based on SOM, an input 
data have to be maximally independent each of other in a 
statistical sense. It was achieved by independent components, 
obtained from the ensemble of zero-space characteristics.    

In contrast to correlation-based transformations such as 
Principal Component Analysis (PCA), ICA not only 
decorrelates the signals (2nd-order statistics) but also reduces 
higher-order statistical dependencies, attempting to make the 
signals as independent as possible. The technique of ICA is a 
relatively new invention.  So it is important to consider the 
main aspects of ICA. 

C. Independent Component Analysis 
Our ICA algorithm based on the maximization of 

nongaussianity[5]. The most natural information-theoretic 
contrast function is negentropy. Negentropy is based on the 
information-theoretic quantity of differential entropy, which is 
related to the information that the observation of the variable 

gives. The more “random”, i.e., unpredictable and unstructured 
the variable is, the larger its entropy. The (differential) entropy 
H of a random vector y with density p(t) is defined as 

dttptpyH yy∫−= )(log)()(            (4) 

A fundamental result of information theory is that a 
gaussian variable has the largest entropy among all random 
variables of equal variance. This means that entropy could be 
used as a measure of nongaussianity. In fact, this shows that the 
gaussian distribution is the “most random” or the least 
structured of all distributions. Entropy is small for distributions 
that are clearly concentrated on certain values, i.e., when the 
variable is clearly clustered, or has a p.d.f. that is very “spiky”. 
To obtain a measure of nongaussianity that is zero for a 
gaussian variable and always nonnegative, one often uses a 
normalized version of differential entropy, called negentropy. 
Negentropy J is defined as follows: 

)()()( yHyHyJ gauss −=            (5) 

where ygauss is a gaussian random vector of the same correlation 
(and covariance) matrix as y. Due to the above-mentioned 
properties, negentropy is always nonnegative, and it is zero if 
and only if y has a gaussian distribution. Negentropy has the 
additional interesting property that it is invariant for invertible 
linear transformations. The advantage of using negentropy, or 
equivalently, differential entropy, as a measure of 
nongaussianity is that it is well justified by statistical theory. In 
fact, negentropy is in some sense the optimal estimator of 
nongaussianity, as far as the statistical performance is 
concerned. The problem in using negentropy is, however, that 
it is computationally very difficult. Estimating negentropy 
using the definition would require an estimate of the 
probability density function(p.d.f).  

The problem of restoration a probability density function 
(p.d.f.) is the central problem of mathematical statistics. 
According to the definition, the p.d.f. P(t) is connected with 
cumulative density function (c.d.f.) }{)( ztPzF ≤= by 
integral relation: 
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we can rewrite it as: 
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For continues densities there is only one solution of (7). Now 

let’s determine a fitted c.d.f.: 
l
kzFl =)(  , if z is more than k-

elements of sampling lzz ,...,1 : 
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The Grivenko-Kantelly theorem states, that with increasing 
amount of sampling l, the fitted c.d.f . is uniformly coming to 
the true c.d.f.. 
 



Now, we shall try to find the solution of (7) in the situation 
where the unknown c.d.f. F(z) is substituted by the fitting 
c.d.f. Fl(z). It should be noted, that approximation of p.d.f. is 
achieved by solution of ill-conditioned problem of numerical 
differentiation where the right side is specified inaccurately. 
Nevertheless, the solution of (7) will not be any continuous 
function, but the positive-definite function P (t) so as: 
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Thus, p.d.f. P(t) is a solution of integral equation of Fredholm 
order I (7).  Approximation of p.d.f. P(t) is searched in the 
form of expansion of trigonometrical functions: 
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The problem of choosing the degree of complexity of 
estimation (i.e. the number of expansion terms N) is solved by 
the method of structural risk minimization.  

 In this paper we proposed two-phase algorithm for p.d.f 
estimation [1,4]. Thus, in this algorithm we realized two stages 
of problem solution – the rough estimation of distribution and 
accurate estimation of the probability density function. 
Obviously, these two stages are fundamentally necessary. If 
you look on the well-known traditional methods, e.g. histogram 
method, Parzen-Rozenblat method, you can see that here you 
have to use two stages also.  

We have tested this method on the synthetic data, and 
compared results with Parzen-Rozenblat method. The proposed 
method gave much more accurate data than Parzen-Rozenblat 
method, especially for multimodal p.d.f. Thus the two-phase 
algorithm gives a very good approximation for unimodal and 
for multimodal probability density functions.  

A fundamental approach to ICA is given by the principle of 
nongaussianity. The independent components can be found by 
finding directions in which the data is maximally nongaussian. 
Nongaussianity is measured by entropy-based measures. 
Estimation of the ICA model can then be performed by 
maximizing such nongaussianity measure - negentropy. 
Several independent components can be found by finding 
several directions of maximum nongaussianity under the 
constraint of decorrelation. 

The main mathematical aspects of ICA are widely 
considered in a great number of papers[5,6]. But, it should be 
noted, that main efforts were focused on the increasing of 
computational speed, which is necessarily affected on the 
accuracy of independent component achieving. Our main 
objective was to reveal very fine effects into analyzed 
geophysical field images, so we had to develop a novel, more 
accurate method for computation of independent components 
of synthetic image ensembles, based on more accurate 
probability density function approximation.      

III. RESULTS 
In our experiments we considered image of magnetic field 

of the earth surface (Fig. 1).  The image of magnetic field is a 
typical example of low contrast image with margin fuzziness. 
In consequence of this, the visual analysis is very difficult 
problem. 

Following our method, we achieved nine complex zero-
space characteristics which are not shown there. We use 
magnitude and phase of these characteristics separately for our 
future processing. On the ICA step we reduce the number of 
components to three (precisely on PCA stage), so we achieve 
3 independent components(ICs) from magnitude of the 
characteristics and 3 independent components from phase of 
the characteristics. Three ICs from the magnitude of zero-
space characteristics are shown below. 

 
Figure 2.  First IC achieved from magnitudes of zero-space characteristics.  

 
Figure 3.  Second IC achieved from magnitudes of zero-space characteristics.  



 
Figure 4.  Third IC achieved from magnitudes of zero-space characteristics 

 
Figure 5.  The resulting image of magnetic field achieved after fusion of  ICs 

of the magnitudes of zero-space characteristics. 

 
Figure 6.  The resulting image of magnetic field achieved after fusion of  ICs 

of the phases of zero-space characteristics. 

The result of three independent components fusion into a 
single resulting image, using SOM is presented in Fig.5 and 
Fig. 6. 

After applying our methods, we achieved very promising 
result, which shows a very sensitive segmentation of magnetic 
field. Considering Fig. 5 and Fig.6, you can see that the 
proposed method of geophysical image analysis based on 
independent components allows to make very sensitive 
segmentation of the image of magnetic field. It should be once 
more emphasized that a direct applying of SOM algorithm to 
the zero-space characteristics didn’t give any positive results. 
So the proposed method is supposed to be a very promising 
and very useful in such an important problem as geophysical 
field segmentation. 

IV. CONCLUSION 
In summary, we can assert following: 

• Application of zero-space imaging method discovers a 
potential capability to increase a local sensitivity visual 
analysis of geophysical images. 

• The results of our researches confirmed that imaging of 
zero space information, based on independent components 
by applying SOM algorithm for data fusion of synthetic 
image ensembles into a single resulting one is necessary 
for increasing a sensitivity of low-contrast areas detection. 

• Proposed method of ICA ensures the required accuracy of 
independent components computations, which is necessary 
for sensitive segmentation. Considered ICA algorithm is 
based on a novel and very accurate approximation of 
probability density function. 

• Discussed method of geophysical field analysis has a 
considerable potential for future development of its 
informational capabilities. 
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